Urban Trees

Urban Trees#

urban_trees.jpg

Dec, 2022

Geospatial map

In December 2022 signs were placed beside some trees in my town. They were metal plaques with the name of the corresponding tree species engraved on them, the botanical denomination plus the Basque and Spanish common names.

When I saw the first sign, I thought that they were not going to last long. They would be vandalised and taken away sooner rather than later. The thought of it saddened me because I have always been fond of urban trees, and now that I had the opportunity of learning about some unknown identities, I was sure this information would vanish soon.

So I took action and decided to register them myself. I made a couple of forays, during which I scoured the town to find the plaques. It was fun, sort of like playing a Where’s Wally gymkhana. I wrote the names and the location in a file and made this mini-project. Now I do not worry anymore about the fate of these signs, because the data they contain is safe and sound in the cloud.

Hide code cell source
# Import packages
import pandas as pd
import folium

# Read the data
trees = pd.read_csv("data/zuhaitzak.csv")
trees
name name_eu name_es lat lng
0 Liriodrendon tulipifera Idio-bihotz arbola Tulipífero de Virginia 43.086719 -2.321678
1 Acer platanoides Astigar zorrotza Arce real 43.086785 -2.321637
2 Betula pubescens Urki iletsua Abedul pubescente 43.088292 -2.321790
3 Prunus cerasifera Aranondo japoniarra Ciruelo japonés 43.088463 -2.321800
4 Magnolia liliiflora Tulipa magnolia Magnolia tulipán 43.088353 -2.321855
5 Liquidambar styraciflua Likidambarra Liquidámbar 43.088711 -2.320388
6 Magnolia grandiflora Magnolia Magnolia 43.089846 -2.318472
7 Ficus carica Pikondoa Higuera 43.090004 -2.316878
8 Cinnamomum camphora Kanforrondoa Alcanforero 43.090498 -2.316668
9 Olea europaea Olibondoa Olivo 43.090782 -2.316658
10 Quercus robur Haritz Kanduduna Roble pedunculado 43.091001 -2.316331
11 Juglans regia Intxaurrondoa Nogal 43.092976 -2.314954
12 Cercis siliquastrum Amodio zuhaitza Árbol del amor 43.093494 -2.314714
13 Ulmus pumila Siberiako zumarra Olmo siberiano 43.093343 -2.314924
14 Salix babylonica Sahats negartia Sauce llorón 43.093506 -2.314843
15 Ginkgo biloba Ginkgo Gingko 43.093845 -2.314680
16 Tilia tomentosa Ezki zilarkara Tilo plateado 43.095784 -2.314705
17 Quercus ilex Artea Encina 43.094100 -2.313672
18 Quercus robur Haritz Kanduduna Roble pedunculado 43.093385 -2.314011
19 Platanus x hispanica Platano arrunta Plátano de sombra 43.093178 -2.313473
20 Tilia tomentosa Ezki zilarkara Tilo plateado 43.094105 -2.312938
21 Salix babylonica Sahats negartia Sauce llorón 43.094887 -2.312887
22 Carpinus betulus Xarma (Pago lizarra) Carpe 43.092924 -2.313075
23 Prunus serrulata Gereziondo japoniarra Cerezo japonés 43.092916 -2.313003
24 Tilia platyphyllos Ezki hostozabala Tilo común 43.091745 -2.313578
25 Koelreuteria paniculata Txinako xaboi arbola Árbol de farolillos 43.091666 -2.313531
26 Ligustrum japonicum Arbustu japoniarra Aligustre de japón 43.090623 -2.315702
27 Corylus avellana Hurritza Avellano 43.089814 -2.316211
28 Sorbus aucuparia Otsalizarra Serbal de los cazadores 43.094393 -2.313842
29 Ilex aquifolium Korostia Acebo 43.092496 -2.313682
30 Laurus nobilis Erramua Laurel 43.092436 -2.313660
31 Fagus sylvatica Pago gorria Haya roja 43.089301 -2.318974
Hide code cell source
# Construct a folium map
urretxu = folium.Map(location=[43.090918759887956, -2.315669883437965], zoom_start=15)

# Create locations and markers
for row in trees.iterrows():
    row_values = row[1]
    location = [row_values["lat"], row_values["lng"]]
    popup = "<b>" + row_values["name"] + "</b>" + "\n"\
            + "<i>" + row_values["name_eu"] + "</i>" + "\n"\
            + row_values["name_es"]
    marker = folium.Marker(location=location, popup=popup, tooltip="Click me!")
    marker.add_to(urretxu)
    
# Display the map
urretxu
Make this Notebook Trusted to load map: File -> Trust Notebook